Apr. 2024 - Present

Jan. 2024 - Present

Interests: Robotics, Dynamics and Control, Reinforcement Learning

Education

• Beihang University M.Sc in Dynamics and Control, GPA:3.88/4 (3%), National Scholarship (1%)	Sept. 2022 - Now
 Beihang University B.Eng. in Flight Vehicle Design, GPA:3.8/4 (5%), National Scholarship (1%) 	Sept. 2018 - Jun. 2022
Publications	

Journals

• Zicen Xiong, Yue Wang, "Constant-Thrust Orbital Transfer about Binary Asteroids Using BLT Guidance", IEEE TRANS on AERO ELEC SYS. [paper]

Researches

• In-cabin Robot LINGSUO

World Robot Contest 2024

- Aim: Assisting astronauts in their work finding and delivering cargo; Lunar surface movement lunar surface obstacle movement and opening tasks.
- 1st Prize in World Robot Contest 2024 [report]
- In-cabin Teleoperation Assistant Robotic Arm Research Project
 - **Problem:** Human-machine synergy can strongly affect the efficiency in the space. Teleoperation robots provide a feasible solution.
 - Hardware: 7 DoF ARM: OMEGA Haptic-FRANKA Panda; Agile Hand: SENSEGlove-Libertec

• Free-Flying Cubic Robot for Space Station

Conceptual Design for IAF-Space Universities CubeSat Challenge, SUCC Jun. 2023 - Present

- Aim: Self-propelled in-cabin assistant robot for astronauts in space stations with 6-DoF arm
- Method: Double-gimbal fans enables the robot to have 6 DoF. SLAM mapping is used for in-cabin navigation. The deep neural network is applied to monitoring astronauts's emotion.
- The prototype is still under development and the conceptual design won 2nd Prize in China Grand Finale.[pdf][report][code]
- Constant-Thrust Orbital Transfer about Binary Asteroids Using BLT Control Dec. 2021 - May 2023

Bachelor Thesis

- Aim: Current control algorithms near asteroids are computationally expensive for autonomous orbital tracking. This research tries to achieve efficient guidance for autonomous constant low-thrust guidance about binary asteroid systems.
- Method: A bilinear tangent control is derived by Pontryagin's maximum principle and manifold theory. Acquire near-optimal control profiles and 200 times faster than IPOPT results.

• Multi-functional Electronic Scale with Quotation

Course Project of Electrical and Electronic Experiment 2 Sept. 2020 - Dec. 2020 • Proteus design, prototype made with 74 series and NE555. Support functions: tare module, unit price-total price display. Score:95/100.[slide]

Competitions

•	1st Prize, World Robot Contest 2024, WRC	Sep. 2024
	by Chinese Association of Automation	[report]
•	2nd Prize, 2nd Space Universities CubeSat Challenge, SUCC	Aug. 2023
	by International Astronautical Federation	
•	2nd Prize, 13th National Mechanics Competition for College Students	May. 2021
	by Chinese Society of Theoretical and Applied Mechanics	Ranked 130th[rankinglist]

•	1st Prize in 12th National Mathematics Competition for College Students	Dec. 2020
	by Chinese Society of Theoretical and Applied Mechanics	
•	• 2nd Prize in China Undergraduate Mathematical Contest in Modeling 2020	Oct. 2020
	by China Society for Industrial and Applied Mathematics	
•	Champion in China Aeromodelling Design Challenge 2019	Oct. 2019
	by Aero Sports Federation of China Champic	on Team[rankinglist]
		-

Honors and Awards

Items by Ministry of Education	
• National Scholarship for Graduates, Top 1% Student [announcement]	2024
• National Scholarship, Top 1% Student [announcement][report]	2021
Items by Beihang University	
Academic Excellence Scholarship for Graduates	2022, 2023
• Freshman Scholarship	2022
Outstanding Graduate	2022
Academic Excellence Scholarship for Undergraduates	2019 - 2021

Skills

- Language: English(IELTS 8.0, TOEFL 104), Chinese(Native)
- Coding: Python, MATLAB, C/C++, C#, Git, bash, LATEX
- Hardware: Arduino, STM32
- Software: ROS, CAD (SolidWorks), ADAMS, ANSYS, Multisim, Proteus
- Misc.:HAM(Amateur Radio)[BI1RKD's QRZ], PADI Diver